HELPING WITH MATHS AT HOME

OPULTON JULIO

SCHOC

How can

I work

this out ?

	Mu	ılt	ip	lic	ał	ioi	n .	Sq	uo	ire
Χ	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

Is there anything I can do at home, to help my child with their Maths work?

- Ask them to help you when you are calculating with money, measuring, weighing.
- Help them to learn their multiplication times tables.
 (All children, by the end of Year 4 must be able to recall their times tables.)
- Encourage your child to double and halve, find a fraction of a quantity, spot a pattern and talk about the shapes of objects in the environment.
- I Tell the time and use timetables and maps.

In the later Primary Years, Key Stage Two, the children are encouraged to continue to use mental calculations, but will also be introduced to written methods. Please use the following examples and the suggested vocabulary when supporting your child at home. Hopefully, this will reduce any misconceptions and provide a consistent approach to learning.

Vocabulary	
Partition	Place value
Rounding	Subtract
Count on	Minus
Count back	Find the
Multiples of 10	difference
Vertically	Compact method
Horizontally	Ladder
Calculations	Number line
Brackets	Borrow
Add	Carry over
Digits	Exchange
Thousands Hundreds Tens	Total
Units Times tables	Sum of
Multiply	Decimal point
Grid method	Remainders
Product	Divide

Methods and strategies for the four rules

Addition using partitioning, horizontally.

45 + 37 = (40 + 30) + (5 + 7) = 70 + 12 = 82

Addition using partitioning, vertically.

4	5	+	346 +
<u>3</u>	7	_	<u>279</u>
1	2	(7 + 5)	15
7	0	_ (40 + 30)	1 1 0
8	2	_ (12 + 70)	<u>500</u>
			625

Addition, on a number line

86 + 57 = 86 + 50 + 7 = 143

When adding on a number line it is important to start with the largest number and then add on the smaller number. Always partition the second number (50+7) and add on in multiples of 10. Complete the sum by adding on the remaining digits. Complete the sum by adding on the remaining digits.

Partitioning= To separate the digits into their place values. 1. Separate the tens and units. 2. Add the tens inside one bracket and the units into another. 3. Add altogether to find the total.

To gain understanding of place value, partitioning is still used, but now the calculation is set out vertically with each digit in the correct column. The jottings at the side, in the brackets, remind your child of the numbers being added together. As they become more confident, they no longer need to be written down.

Addition- Compact Method			
Without carrying	With carrying		
435	453+		
<u>134+</u>	<u>267</u>		
<u>569</u>	<u>720</u>		
	1 1		

Multiplication -

By the end of year 4, it is imperative that all pupils know their multiplication times tables off by heart (to 12x12). Your child's knowledge and understanding of the times tables need to be secure, then the process of solving these calculations, will be much quicker and achievable. The following pencil and paper methods will be taught to enable the children to work out long multiplication.

The partitioning method.

 $38 \times 7 = (30 \times 7) + (8 \times 7)$ = 210 + 56 = 266 Partition the Tens and Units in 38. Place partitioned numbers inside their own set of brackets Multiply each number by the single digit. Find the value of each sum in the brackets. Add these answers together.

The Grid Method

38 x 7 =266

50 X I = 200	
x	7
30	210
8	56
Total=	266

Partition the Tens and Units in 38. Place new numbers (30 + 8) in the grid as shown. Multiply the numbers across the grid. Place the answers Find the total, by adding these together.

54 x 22 = 1188

х	20	2
50	1000	100
4	8 0	8
Totals=	1080 +	108

Multiplying, using the ladder method

4 5 x	
8	
4 0	(8x 5)
<u>320</u>	(8 x 40)
360	

These vertical methods show the expanded version so that the children can show their full understanding of the place value of each instruction. It is important that they continue to understand the value of each digit. Although we may say 8 x 4, the actual value of the 4 is 40.

Please encourage the use of the real value of the digits.

463 x	
<u>65</u>	
15	(3x5 <u>)</u>
300	(5x 60)
20000	(5x 400)
180	(60x 3)
3600	(60 x 60)
<u>240000</u>	(60x 400)
<u>264095</u>	
1	

By the end of year 5, or when your child is secure in their understanding of place value, the shorter method of long multiplication will be encouraged.

	64 x	
78 x		Always start in the units
6	<u> </u>	
0		column. Work right to left.
4 6 8	192	Encourage carrying the
4	<u>3200</u>	digits and recording them in
	3392	a neat and concise place, as
		shown.

Division

All children will use their times table knowledge to work out the calculations used in division. In year 3 the number sentences will look like this;

 $24 \div 6 = 4$ or $29 \div 6 = 4$ remainder 5

When dividing a 3 digit number by a one digit number, then the children will need to use a more efficient method. This is called CHUNKING. It allows the children to continue to understand the importance of place value and also estimation. The method still relies on knowing your times tables, and requires the use of subtraction as well.

In year 5 the children are introduced to the short method and are required to ask 'how many 4s are in?'

219	212r1	2 1 4 7 5
4) 87 36	4)8519	4) 8 5193020

Later the decimal point is introduced into the question and also to enable the answer to be given as a remainder, in the context of the question.

		1	3	2.	0	6	
7)	9	2	4.	4	2	

This week the sweet shop took £924.42 The average amount raised each day was £132.06.

Subtraction

Subtracting, using a number line and counting on. (Frog)

Subtracting- using the compact method

Without exchange	With exchange
2752-	3 4 16 7 12 3 1 0 -
<u>1 4 3 1</u>	2842
1 3 2 1	<u>1888</u>

When solving a word problem, your child may choose any of the suggested methods to work out the answer. Always encourage neat presentation of the written method as this will hopefully eliminate any careless errors.